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Why do we need to think more about our methods?

No Support for Historical Candidate Gene or Candidate
Gene-by-Interaction Hypotheses for Major Depression
Across Multiple Large Samples

Richard Border, M.AA., Emma C. Johnson, Ph.D., Luke M. Evans, Ph.D., Andrew Smolen, Ph.D., Noah Berley,
Patrick F. Sullivan, M.D., Matthew C. Keller, Ph.D.
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5-HTTLPR polymorphism impacts human cingulate-

Objective: Interest in candidate gene and candidate gene-
by-environment interaction hypotheses regarding major

Results: No clear evidence was found for any candidate gene
polymorphlsm assoclanons with depression phenotypes or

depressive disorder remains strong despite
surrounding the validity of previous findings. In response to
this controversy, the present investigation empirically iden-
tified 18 candidate genes for depression that have been
studied 10 or more times and examined evidence for their
relevance to depression phenotypes.

Methods: Utilizing data from large population-based and
case-control samples (Ns ranging from 62,138 to 443,264
across subsamples), the authors conducted a series of pre-
registered analyses examining candidate gene polymorphism

any polymorpk by ronment effects. Asa
set, depressnon candidate genes were no more associated
with depression phenotypes than noncandidate genes. The
authors demonstrate that phenotypic measurement error is
unlikely to account for these null findings.

Conclusions: The study results do not support previous
depression candidate gene findings, in which large genetic
effects are frequently reported in samples orders of magni-
tude smaller than those examined here. Instead, the results
suggest that early hypotheses about depression candidate

amygdala interactions: a genetic susceptibility
mechanism for depression

Lukas Pezawas', Andreas Meyer-Lindenberg'-, Emily M Drabant!, Beth A Verchinski', Karen E Munoz',
Bhaskar S Kolachana!, Michael F Egan!, Venkata S Mattay!, Ahmad R Hariri* & Daniel R Weinberger!

.nature.

Carriers of the short allele of a i 5’ promoter ism of the i gene have i anxiety-
related traits, i ivity and elevated risk of depressmn Here, we used multimodal
neuroimaging in a large sample of healthy human subjects to elucidate neural mechanisms underlying this complex genetic

P

association. Morphometrical analyses showed rednced gray matter volume in short-allele carriers in limbic regions critical for

main effects, polymorphism-by-environment interactions,  genes were incorrect and that the large number of associ- >
processing of negative emotion, p and Functional analysis of those regions during

and gene-level effects across a number of operational def-  ations reported in the depression candidate gene literature

initions of depression (e.g, lifetime diagnosis, current se-  are likely to be false positives s‘ perceptual processing of fearful stimuli demunslratgd tight coupling as a circuit impli in the extinction of negative

verity, episode recurrence) and environmental moderators ¢ affect. Short-allele carriers showed relative of this circuit. F , the of coupling inversely predicted

(e.g.. sexual or physical abuse during childhood, socioeco- almost 30% of variation in anxiety. These lated in anatomy and funcnon of an amygdala-

nomic adversity) AJP in Advance (doi: 10.1176/appiajp 2018.18070881) cmgulate feedback circuit critical for emnlmn i a yst level ing normal
ivity and genetic pi for dep
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200 M Studies examining top polymorphism
M Studies examining other polymorphisms

“what bothers me isn’t just that people said 5-HTTLPR mattered and it didn't. It’s that
we built whole imaginary edifices, whole castles in the air on top of this idea of 5-
HTTLPR mattering. We “figured out” how 5-HTTLPR exerted its effects, what parts of the
brain it was active in, what sorts of things it interacted with, how its effects were
enhanced or suppressed by the effects of other imaginary depression genes. This isn’t
just an explorer coming back from the Orient and claiming there are unicorns there. It's
the explorer describing the life cycle of unicorns, what unicorns eat, all the different
subspecies of unicorn, which cuts of unicorn meat are tastiest, and a blow-by-blow
account of a wrestling match between unicorns and Bigfoot.” by Scott Alexander
https://slatestarcodex.com/2019/05/07/5-httlpr-a-pointed-review/
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https://slatestarcodex.com/2019/05/07/5-httlpr-a-pointed-review/

Why do we need to think more about our methods?

Increases, decreases and a mixture of both is reported in the literature
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Interhemispheric connectivity
Supekar et al. 2013, Cell Reports

Lynch et al,, 2013, Biol. Psychiatry

Anderson et al. 2011, Cerebral Cortex

1 | ASDRTGHN ASD > TC :
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Di Martino et al., 2013, Mol. Psychiatry

Decreased in ASD l

Differences in:

Sample size

Demographics (age, sex)

Diagnostic and other inclusion/exclusion criteria
Pre-processing methodology

Stastical analyses

Medication effects

Motion

ICA based functional connectivity

mPFC

Von dem Hagen et al. 2012, Soc Cogn Affect Neuroscience
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WHAT ARE THE LIMITATIONS OF OUR TOOLS




Reliability of fMRI is strongly dependent on the task and spatial
location

MID

ICC(intra-class correlation coefficient)

Holiga et al., 2018, Plos One —



Generally rather low to fair reliability of region- and voxel-wise
fMRI and rsfMRI analyses

fALFF value

Exemplary atlas region: ICC(reliability)=0.31
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Time point 2

Region-wise

Domain Measure
ICC
Visit 1 to visit 2
median [ Ps- Pos]
th MID 0.70 [-0.00-0.88]
fMRI
N-back 0.38 [-0.09-0.68]
e 0.42 [0.09-0.69
N —— ToM .42 [-0.09-0.69]
0.34 * lingar
¥ FM 0.38 [-0.15-0.71]
0.33 -
* ¥ Encoding 0.30 [-0.19-0.58]
032+
¥ *ooe % Recall 0.23 [-0.84-0.77]
031 f N
L * Recognition 0.48 [0.03-0.72]
0.3 L g
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* * *
D281 rs-fMRI ALFF 0.72 [0.27-0.86]
*
007 . . . . ‘ . . , -
0.26 0.27 0.28 0.29 0.3 0.3 0.32 0.33 0.34 fALFF 0.57 [0.17-0.75]
TI me pOI nt 1 ReHo 0.58 [0.21-0.78]
DC 0.44 [-0.04-0.71]
EC 0.36 [-0.15-0.67]
Hurst 0.45 [0.18-0.64]
ASL CBF 0.83 [0.42-0.91]

ICC criteria (Cicchetti, Domenic
V. 1994):

Less than 0.40—poor.

Between 0.40 and 0.59—fair.
Between 0.60 and 0.74—good.
Between 0.75 and 1.00—excellent.
ICC - Intra-class correlation
coefficient

Holiga et al., 2018, Plos One _



Uncorrected statistics and circularity can produce misleading
effect sizes
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Nature Reviews | Neuroscience
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Why large sample sizes are needed

“Typical” size neuroimaging studies can only detect extremely large effects

0.5
Effect size

Power at p<.001 uncorrected

Typical fMRI study has about 15-30 participants
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We need to better understand sources of biological variability

D
MRI (functional A
and structural)
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We need to better understand sources of biological variability

D
MRI (functional .
and structural)
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Correlations between Allen Brain Atlas and group-average in vivo PET receptor maps, unpublished data

Correlations between gene expression and imaging: 0 and 0.7
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HTR1a: r=0.88

HTR1b: r=0.16

D1:r=0.54

D2:r=0.71




We need to better understand sources of biological variability

MRI (functional
and structural)
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***p<0.001 Correlation between PET derived receptor maps and
**p<0.01 risperidone induced blood flow changes

Dukart et al., in preparation




We need to better understand sources of biological variability

Limitations A lot of variance in transcription a) mMRNA expression often

is explained by environment or poorly correlates with
by gene/gene interactions respective receptor
expression

b) Large variability in gene
expression is observed
for some genes across

individuals

MRI (functional
and structural)
Y,

A W A A ¢

a) Functional MRI Low reliability of regional
measures are only functional MRI measures
sensitive to some adds a lot of noise to the data

aspects of underlying

activity

b) Some neurotransmitter
changes do not result in
changes in functional
activity




HOW CAN WE ADDRESS THOSE LIMITATIONS




Within region reliability is rather moderate for most functional
MRI measures

fALFF for 1 region

Between
051 Domain Measure |CC
L Visit 1 to visit 2
0.45 median [Ps-Pys]
0.4
th- MID 0.70 [-0.00-0.88]
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Holiga et al., 2018, Plos One _



Spatial reliability across regions is consistently higher than the
reliability within each region for task-based fMRI and rsfMRI

fALFF across regions
Between  Within

051 Domain Measure |CC |CC
L Visit 1 to visit 2 Visit 1 to visit 2
0.45 m::tilinn [DP‘;SE]’%] median [Ps-Pys]
0.4
tb- MID 0.70 [0.00-0.88] 0.79 [0.32-0.93]
AN aeslk MRI
— : N-back 0.38 [-0.09-0.68] 0.81 0.61-0.94]
cC *
r— 03} * **ﬁéﬁé ToM 0.42 [0.09-0.69)] 0.58 [0.10-0.83]
o Hy
Q. o025t * M 0.38 [0.15-0.71] 0.80 [0.63-0.93]
GEJ 02} Eamding | oxmlois-ossl  [NEEEEEEE ICC criteria (Cicchetti, Domenic V. 1994):
= Recall 023 [-084-0.77] 072 [0.25-0.89] Less than 0.40—poor.
015 .
= Recognition 0.48 [0.03-0.72] 0.72 [0.48-0.86] Between 0.40 and 0.59—fair.
Gl Go/no-go -0.16 [-0.74-0.36] 0.24[-111-0.66] Between 0.60 and 074—gOOd
0.05F rs-fMRI ALFF 0.72 [0.27-0.86] 0.96 [0.73-0.98] Between 0.75 and 1-00_exce”ent-
0 ‘ ‘ ‘ ‘ ‘ e e 098 095050 ICC — Intra-class correlation coefficient
0 0.1 0.2 0.3 0.4 0.5
ReHo 0.58 [0.21-0.78] 0.96 [0.86-0.98]
TI me p0| nt 1 DC 0.44 [-0.04-0.71] 0.89 [0.62-0.95]
EC 0.36 [-0.15-0.67] 0.65 [0.19-0.92]
Hurst 0.45 [0.18-0.64] 0.92 [0.77-0.96]
ASL CBF 0.83[0.42-091] 0.96 [0.91-0.98]

Holiga et al., 2018, Plos One _



Pharmacodynamic mapping of drug receptor profiles using
Cerebral Blood Flow — lllustration of the concept

Correlating spatial profiles of receptor densities and drug effects

13 Ex vivo In vivo receptor estimates
receptor density GABAa
estimates DAT

AMPA

| BDRDO
GABAa ’9 ‘e
| DDRD
Niconi;ilc a2p4 ’9 ’9
2| 6D DD

Palomero-Gallagher et
al. 2015, in Brain
Mapping: An
Encyclopedic Reference

Dukart et aI.| Cerebral blood flow iredicts differential neurotransmitter activiti| Scientific reiorts| 2018 _

Receptor density

Cerebral Blood Flow (CBF,
using Arterial Spin Labeling)
for:

Risperidone
Olanzapzine
Haloperidol
Methylphenidate
Escitalopram
Ketamine
Midazolam
Always vs placebo

Drug effect (Effect

Correlations



Spatial patterns of CBF alterations are predictive of the
underlying mechanism of action of respective compounds

Correlations with in vivo receptor density
estimates (dopaminegic compounds)

Correlational profiles with ex
VIVOo receptor density estimates
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Further potential applications:
b PP 5-HT2)

—> Profiling of new drugs (hypothesis generation)
- Disease patterns
- Individual symptom prediction/treatment response

Dukart et al., Cerebral blood flow predicts differential neurotransmitter activity, Scientific reports, 2018




Making use of novel tools and resources

Genetics and traits

Gene ATLAS is a large database of associations between hundreds of traits and
millions of variants using the UK Biobank cohort.

Individuals Traits Million Variants

This work has been done at the within the E with the

contribution: Ca dri and Konrad R

Gene expression
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Dukart et al., in preparation'

Public neuroimaging
databases
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Data Exchange

Introduction

Autism spectrum disorder (ASD] |5 characterzed by qualitatie Impairment in social recpracity, and by repetiive, resticted, and stereotyped behaviors/interests. Prewously
considered rare. ASD i5 now recognized 1o occur 1 more than 1% of children. Despite continuing research advances, ther pace and cinical IMPSct have not kept up With the
urgency to identify ways of determining the diagnosis at earlier 3ges, selecting optimal treatments, and predicting outcomes. For the most part

beterogeneity of ASD. o

5 15 e 10 the complexity and
i ta reveat

undertying ASD. In respanse, the Autism Brain Imaging Data Exchange (ABIDE) initiative has aggreqated functionst and structural brain imagng data cellacted from Laborateries
arcund the werd to sccelerate our Lnderstanding of the neural bases of
ABIDE nitiative now includes two Loroe-scale collections: ABIDE | and ABIDS

With the uitimate gost of facilitating discovery cience and comperisons across samples, the
5ch collection was created thrcugh the aggregation of datasets independently collected axross




Objective: to test for replicability of ASD resting state connectivity
alterations across several cohorts using the same methodology

Same pre-processing and

Exploration Validation datasets
dataset analysis pipeline for all data
EU-AIMS LEAP
Stats
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d p-
ASD D value)
N 202 192 -
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Male female 14260 g e
17555, 174= 01302,
o 3 51 915
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033

DSM 1V diag (none/ ASD/

Asperger/ PDD-NO . -
G - Degree centrality = Sum(r>prespecified

*r>0.25 based on previous literature for degree
ADOS total (mean=SD, N) centrality

: . i he REST I
TD: typically developing healthy controls Computed using the REST toolbox

Holiga S, Hipp JF, Chatham CH, ... & Dukart J. (2019). Patients with autism spectrum disorders display reproducible functional connectivity
alterations . Science Translational Medicine




Outcomes of the degree centrality analysis

Increases are replicated in all four cohorts and decreases in three out of four

Significant DC alteration in EU-AIMS

EU-AIMS ABIDE | ABIDE Il InFoR
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*p<.05, **p<.01,***p<.001

Holiga S, Hipp JF, Chatham CH, ... & Dukart J. (2019). Patients with autism spectrum disorders display reproducible functional connectivity
alterations . Science Translational Medicine




Outcomes of the degree centrality analysis
Consistent spatial alteration patterns are observed across all four cohorts

EU-AIMS ABIDE |
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Holiga S, Hipp JF, Chatham CH, ... & Dukart J. (2019). Patients with autism spectrum disorders display reproducible functional connectivity
alterations . Science Translational Medicine




Conclusions

Replication in independent datasets is an important first step for increasing
replicability of neuroimaging research

Spatial profile analyses and correlations with PET, gene expression data may
provide a way forward to increase reliability of neuroimaging tools

Novel tools allow to answer all of the necessary questions to establish more reliable,
Interpretable and replicable links between genetics, imaging and behaviour
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